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Summary 

Frequency domain and time domain methods of 
analysis are reviewed with regard to their applica- 
tion toward identifying pilot models. The models 
would subsequently be used to study the stability and 
performance of a man-machine system in which the 
human controller performs a compensatory tracking 
task. Sample linear model results are corLpared 
and discussed. The inherent requirement con- 
straining the freedom of the form of the pilot model 
is also discussed. The constraint in the frequency 
domain consists of smoothing with respect to fre- 
quency; whereas, the constraint for the time domain 
model is more natural and meaningful in that it 
consists simply of limiting the memory of the pilot 
model. The linear models determined by both 
methods were almost identical. 

The time domain method of analysis enables 
the determination of a nonlinear pilot model. The 
inclusion of a cubic as well as a linear term ac- 
counted for only a small additional part of the pilot's 
remnant and indicated that only a small portion of 
the total power of the pilot's output is caused by non- 
linearities. The power spectral density of an 
ensemble average of the pilot's outputs is used to 
determine the upper limit on the amount of power 
associated with a deterministic response. The in- 
dication is that about half the remnant is stochastic 
and only a small part is due to nonlinear and time- 
varying response for the example discussed. 

Introduction 

Analysis of the stability and performance of 
control systems involving a pilot as an active element 
have been hampered by the lack of an adequate math- 
ematical model of the pilot's control function. Ex- 
periments have been performed to determine such 
models since 1947.l In these experiments the pilot 
performed a compensatory tracking task in which he 
tried to minimize the difference between the 
response of a simple controlled element and a dis- 
turbance function. 

Data resulting from such experiments have been 

for a limited set of controlled element 
analyzed and linear pilot models have been 
obtainedi* 3* 
dynamics. The methods used to construct the pilot 
models have been almost exclusively in the frequency 
domain. Recently, the time domain analysis has 
been applied to the problem of modeling pilots. 

It is the purpose of this paper to assess first 
the frequency domain rr-ethod of analysis and then 
the time domain analysis of Balakrishnan and Hsieh. 
A comparison of the results of the two forrns of 
analysis applied to a linear model is made and their 
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advantages and disadvantages discussed. Next, the 
time domain method of analysis is applied to the 
identification of a nonlinear pilot model. This is 
the first time that the nonlinear time domain method 
has been applied to human response data. The 
power spectral density of an ensemble average of 
the pilot's output is used to determine an estimate 
of the amounts of control response that are linear, 
deterministic, and stochastic. 

Description of Experiment 

The classical experiment for obtaining data from 
which pilot models can be identified is illustrated in 
figure 1. The pilot is asked to minimize the error ,  
e, displayed to him by an oscilloscope, television 
screen, or meter by manipulating a cantroller. The 
controller deflection, c, is sent to an analog com- 
puter which computes the response of the controlled 
element and adds to it the input disturbance function, 
i, forming an error which, in turn, is sent to the 
display. Recordings are made of the signals which 
are later processed to obtain the model of the pilot. 
Similar experiments have been performed in actual 
flight in which the pilot mmeuvers the airplane. 39 

Discussion and Results 

Frequency Domain Method 

Classically, the model of the pilot is considered 
to be a linear-describing function plus a remnant 
signal, r, added to the model output a~ shownAin 
figure 2. The describing function estimate, Yp(jw), 
is obtained by first computing the cross-spectral 
density functions Qic(jw) and &e(jw). The estimate 
of Yp(jw) is then the ratio 

Cross-spectral density functions have generally 
been used instead of Fourier transforms as a means 
of removing the bias in the estimate of Yp(jw) 
introduced by the remnant. The use of cross- 
spectral density functions, however, was shown in 
reference 5 to have no effect on the bias. The same 
estimate of Yp(jw), therefore, can be expressed as 
the ratio of Fourier transforms 

and the bias in both cases is 



Figure 3 (from ref. 4) shows an example of the 
results of a study of human control response on 
simulators in which describing functions for three 
different pilots were obtained by using the fTequency 
domain method. The values presented for Yp(jw) 
are the means of 10 runs for pilot A and three runs 
each for pilots B and C. The vertical lines indicate 
the range of plus or  minus one sigma for each of 
the points. The lack of a vertical line indicates the 
range to be less than the height of the symbol. The 
input disturbance functionAconsisted of the sum of 
10 sinusoids. Values of Yp(jw) were determined 
at the input frequencies. The use of sinusoids for 
the input disturbance function has the advantage of 
concentrating the power at several frequencies, 
thereby enhancing the accuracy of the estimate of 
the pilot-describing function at the input frequencies. 
If, on the other hand, a random input is used, math- 
ematical difficulties may be encountered when using 
frequency domain methods. For exxmple, if no 
constraint is placed on the form of Yp(jw), the 
resulting estimate will account for the entire pilot 
output, c, erroneously indicating the remnant, r, 
to be zero. This result follows from applying the 
relationship 

A 
at all frequencies. A constraint on Yp(jw), there- 
fore, is usually provided by smoothing the values of 
the cross-spectral density functions or Fourier 
transforms, or by fairing a curve through the raw 
estimates of the pilot's describing function, Qp(jw), 
Rr both. Nevertheless, the required constraint on 
Yp(jw) compromises one of the basic claims made 
for the analyses in the frequency domain, namely, 
that the model may be represented with unlimited 
freedom. 

Linear Time Domain Method 

Let us now consider a linear analysis in the 
time domain in which the output of a linear pilot 
model is expressed in the form (see ref. 6) 

Because the time histories c(t) and e(t) must 
be sampled for analysis, it is more appropriate to 
write 

or in matrix form 

where 

E =  

e(M) e(M - 1) . . . e(3) e(2) e(1) 
e(4) e(3) e@) 

e(4) e(3) 
e(4) 

e(N - 1) 
e(N) 

e(N - M) 
e(N - 1) . . . . e(N - M + 1) 

The sampled impulse response of the pilot model, 
hp(m), can be obtained by using the least-squares 
formulation 

Inherent in the time domain representation of ific 
pilot model is the assumption that the output at any 
one time is a function of only a finite time of the 
history of the error. This maximum memory is 
denoted by TM (MAT) in the integral expression or 
by M in the summation expression of the pilot model 
output. For the pilot model, TM was varied ( 6 7  

changing AT and keeping M constant) until it was 
determined that the value of hp(?-) was essentid1;J 
zero beyond about 1 second. The value of TM, 
therefore, was selected to be somewhat larger than 
1 second. Figure 4 shows a typical result of such an 
analysis. It can be seen that the model impulse 
response first peaks at about 0.25 second, then 
reverses at about 0.45 second to peak in the opgosite 
direction at about 0.6 second, then subsides to zero. 
The first sample (T = 0.05 sec) is typically negative 
but has been faired to correspond to a pure time 
delay of 0.05 second. One indication of the degree to 
which a model represents an actual pilot is the ratio 
outputs of the power of the model in relation to the 
total power of the pilot's output. Linear pilot models 
will typically account for 65 to 90 percent of the total 
for a 4-minute run. The percentage is somewhat 
higher for shorter runs. 

the frequency domain for comparison with the fre- 
quency domain results through the use of the Fourier 
transform 

The time domain results can be transformed to 

?p(jw) = F[~$T)I 

Figure 5 shows such a comparison. The agreement 
between the two methods is good One advantage of 
the time domain method is that QP(jw) can be deter- 
mined as a continuous function of frequency even 
when the input consists of sinusoids, as it does for 
the example shown. The time domain results, by 
their nature, will 

as w - 0  and 
pilot describing function exhibited gain fluctuations 
or a phase lag at the lowest frequencies shown, these 
characteristics would not have been identified by the 
time domain model unless the value of Tjy~ were 
increased considerably. This does not mean that the 
time domain model is limited, but, rather, that TM 
should not be unduly limited. Just as it is necessary 
to constrain the frequency domain model by smooth- 
ing, it is also necessary to constrain the time domain 
model by limiting TM to a value considerably less 

ways yield LGp(jw) = 0, o r  -BO0,  

dw = 0 as w+-0.  Hadthe 
d*pli"), 

2 



than the record length. For pilot models this rep- 
resents a very natural and meaningful constraint in 
the time domain, compared with smoothing in the 
frequency domain. Still another advantage of 
analysis in the time domain is the capability of con- 
structing nonlinear pilot models. 

Nonlinear Time Domain Method 

Nonlinear behavior on the part of the pilot 
accounts for at least part of the remnant of a linear 
pilot model. It is, therefore, of interest to investi- 
gate nonlinear pilot models. The output of a non- 
linear time domain pilot model can be expressed by 
using a Volterra integral series 

. e(U) . . . .  e(l) (e(M)e(.hl)e(al)) . .  (e(M)e(hl)e(l)) (e(hI)e(hf . I)e(hl . 1)) .. 
e(%[ + I) . . e(?) (e(ill)e(M - l)e(l)). .(e(l)e(l)e(l)) 
c(nr+ L) 

= e(\l 4 

(e(b - '.I + 1)2e(N - M)) . . . .  . . . . . . . . . . .  . e(N) e(N hl + 1) (e(N)e(N)e(N 1)) c(N hl  + I )J  

+ . . . . . . . . . . . . .  
(hizher order) 

or in the discrete case 

c(n) - 2 h!(ni)e(n - m c 1) 
m=l (linear) 

+ 2 2 it2(m,, m2)e(n - mi + i)e(n - m2 + 1) 

+ 2 
"'L-l (quadratic) 

2 h3(ml. in2,m3)e(n - nil + I)e(n - m2 + l)e(n - m3 + 1) 
ml=l n 7 = 1  ing=] (cubic) 

+ . . . . . . . . . . . .  
(higher order) 

It was reasoned that the pilot's control response 
would be symmetrical so that only the first (linear) 
and third (cubic) terms were used. The algorithm 
used to perform the analysis was again based on a 
least-squares solution. 6 

Then 
T hl, A 3 = [El, QTE1, 31-l 3 

It is difficult to present the results of such an 
analysis in a meaningful form, but it is instructive 
to look at an example step response. Figure 6 shows 
the response to (1) a step of very small amplitude so 
that only the linear term contributes significantly to 
the response and (2) a large step. The responses 
have been normalized to the amplitude of the step 
inputs to facilitate comparison. The response of the 
pilot model to the larger step is slightly faster, has 
more overshoot, and has a lower steady-state gain. 
The inclusion of the cubic term increased the ratio 
of the power of the model output to the total power of 
the pilot output by only a few percent. This result 
would indicate the remnant to be largely stochastic 
as opposed to nonlinear and deterministic. 

If the nonlinear model is expanded to include 
more samples of the cubic term and higher order 
terms, dimensionality will become a problem. One 
means of reducing the total dimension is offered by 
Balakrishnan and Hsieh. 6, 
of the adjoint system of equations, a cubic weighting 
function of the f o m  

hp3(T1, 72,731 =/ f3(t - T)f3(t - T2)f3(t - 73)d71dT,dT, 

Through the employment 

L 

0 

is obtained. This equation reduces the weighting func- 
tion of three variables to a single function of one 
variable. This technique has not yet been applied to 
the problem of identifying pilot models, and it is not 
known if the reduction in dimensionality justifies the 
added computation required. 

Analysis of the Pilot's Output 

It would be of interest to know what portion of the 
pilot's response is deterministic, but not linear, in 
order to assess the potential of a nonlinear pilot model 
in describing the pilot's output. It is known that at 
least part of the pilot's output is stochastic, since 
results of repeated experiments are never identical. 
It is possible to estimate the proportioning of the 
power of the pilot's output by examining the power- 
spectral density functions of both the pilot's output 
and its ensemble average. Both functions are shown 
in figure 7. The cross-hatched peaks in the graph 
show the amount of power associated with a linear 
response at the frequencies of the input. The shaded 
areas show the change in the power as a result of 
ensemble averaging. Since the deterministic response 
would be unchanged by averaging, the shaded areas 
are an indication of the power associated with the 
stochastic portion of the pilot's output, which will not 
be accounted for by a deterministic model. The un- 
shaded areas, then, are upper limits on the potential 
increase in power accounted for by using a nonlinear 
rather than linear pilot model. 

The bar graph at the right of figure 7 shows the 
proportioning of the power (respective areas) of the 
pilot's output to be 91.7 percent linear (and time in- 
variant), 4 . 5  percent stochastic, and 3.8 percent non- 
linear and other types of responses for the particular 
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example shown. These resuXs -,hould not be wner- 
alized, since changes in the controlled element and 
input can cause a marked charige in the proportioning 
of the power, It should also be noted that a small 
amount of power may be attributed to a nonlinearity 
that is significant in other aspects such as limit 
cvcles . 

Concluding Remarks 

A review of freyueney and time domain methods 
of anelysis shows that both methods require con- 
straints on the freedom of the pilot models. The 
constraint in the time doninin is more natural and 
straightforward than thaz of smoothing in the fre- 
quency domain. The two methods show good agree- 
ment for t h  line= model when the input disturbance 
fur;ctioa consists of siniioids. 

The inclusion of a cubic term in the time domain 
pilot model represents the first time the analysis 
has been applied to human response data. For the 
exmple discussed, only a few percent additional 
power of remnant was accounted for by the addition 
of the cubic term. An investigation of the power- 
spectral density of an ensemble average of pilot 
output indicates the reason to be the largely sto- 
chastic nature of the remnant. The proportioning 
of the power of the pilot's output appears to be about 
92 percent due to linear response, 4 percent due to 
stochastic response, and 4 percent due to nonlinear 
and other types of responses for the example 
discussed. 

With this step toward the application of time 
domain methods of analyzing h m a u  control response, 
the work ahead holds much promise toward the deter- 
mination of more meaningful and useful pilot models. 
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Symbols 

pilot output, control deflection, centimeters 

mean square o r  total power of c, centi- 
meters' 

error matrix 

error, radians 

Fourier transform 

the maximum memory time of the pilot 
model, seconds 

time, seconds 

controlled element transfer function, 
radians/centimeter 

pilot describing function, centimeters/radian 

cross-spectral density of x(t) and y(t) 

power-spectral density of x(t) 

argument of hp, seconds 

incremental value of T~ seconds 

frequency, radians/second 

estimate 

Matrix notation: 

(x), column matrix 

[XI  rectangular matrix 

xT transpose 

X-1 inverse 

Numbers used as subscripts denote the pertinent 
term, o r  terms, of the Volterra integral series. 
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Figure 1.- Block diagram of a pilot in a compensatory tracking task. 

Pilot model ----------- 

otal pilot output 

Figure 2.  - Frequency domain model of a pilot. 
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